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Technická 8, 616 00 Brno, Czech Republic

E-mail: coufal@feec.vutbr.cz

Received 4 January 2008, in final form 12 February 2008
Published 26 March 2008
Online at stacks.iop.org/JPhysA/41/145401

Abstract
Two models are described whose solution is the current density in a tubular
conductor that is given by the radii ri < ro and supplied from an ideal current
source of a frequency that does not exceed 1 GHz. It has been proven that
the two models are equivalent, but model 1 can practically be used only to
calculate current density in a cylindrical conductor (ri = 0). The general
methods proposed are applied to several concrete examples of tubular and
cylindrical conductors. The solution of examples is given in the figures. In the
solution of examples, attention is devoted to problems that are connected with
the realization of numerical calculation on a computer.

PACS numbers: 41.20.−q, 02.60.−x, 84.32.Ff

1. Introduction

Consider a solitary massive conductor of infinite length whose cross-section is in the shape
of annular area. The longitudinal axis of the conductor is axis z of the system of Cartesian
coordinates xyz. In addition to the xyz coordinates, the system cylindrical coordinates rφz

is also considered. Because of the symmetry with respect to axis z, the φ coordinate will not
be used in the following. The conductor cross-section in the xy plane is determined by the
inequalities ri � r � ro, ri � 0. The conductor is connected to an ideal current source [1]
whose current only depends on time t ∈ [0,∞). The ideal current source supplies current,
but the current does not flow through the source so that no back conductor to the tube under
examination needs to be considered [2]. This case differs substantially from the case solved
in [3, 4], where the existence of a back conductor is assumed. The current density vector J

is in the direction of axis z and only depends on r and t. J = (0, 0, J ), with J = J (r, t)

having a non-zero value only on the interval [ri, ro]. The current flowing through the conductor
excites a magnetic field that is determined by the vector B or H , whose magnitude B or H
also depends on only r and t. The fact that J, B and H do not depend on z actually means
that an infinitely high propagation velocity of an electromagnetic field is assumed. In such a
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case, the current is considered to be slowly varying [5]. We assume that the permeability of
the conductor and its environs is µ0. The conductor resistivity � is so low that displacement
current ∂D/∂t can be neglected. In the whole of this paper the part of the conductor between
the planes z = z1 and z = z2, where z1 < z2, z2 − z1 = z21, will be considered.

The magnetic field of a current flowing through a tubular conductor is easy to determine
using Ampere’s circuital law [5, 6]:∮

C

H · dC =
∫

AC

J · dAC, (1)

where C is a simple finite closed curve that is smooth by parts [7], the only curve in the
following, and AC is a simple finite surface that is smooth by parts [7], the only surface in the
following, bounded by the curve C. Current from the current source is affected in the conductor
by currents that are induced in the conductor according to Faraday’s law of electromagnetic
induction. According to this law, in every closed curve C whose position and shape do not
depend on t electromotive force is induced:

emfC =
∮

C

E · dC = −∂�

∂t
, (2)

where E is the vector of the electric field, and

� =
∫

AC

B · dAC

is a magnetic flux linking the curve C, which does not depend on the shape of surface AC [5].
In addition to the validity of relations (1) and (2), we will further assume that it holds

J = γE, where γ = 1

�
, (3)

∇ · J = 0, (4)

B = µ0H, (5)

∇ · B = 0.

2. Current density in a tubular conductor

The cylindrical conductor is a special case of the conductor under consideration for ri = 0.
The method for calculating the current density in a cylindrical conductor was first proposed by
Maxwell; it is given, for example, in [8]. Two models will be described below, whose solution
is the current density in a tubular conductor supplied by an ideal current source.

2.1. Model 1

To derive model 1 we will, in principle, use the procedure proposed in [8]. The starting point
is relation (1) and relation (2) in the differential form

∇ × H = J, (6)

∇ × E = −∂B

∂t
. (7)

Using (6), equation (5) can be arranged to the form

∇ × B = µ0J . (8)
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With the aid of (3), we will substitute for E in (7). After applying the rotation operation to
(7) we will, with the help of (8), obtain

∇ × ∇ × J = −γ
∂

∂t
∇ × B.

In re-writing this equation, we take into consideration (4) and (8) and obtain

∇2J − µ0γ
∂J

∂t
= 0. (9)

The conductor is symmetrical with respect to axis z, and so J only depends on r and t, and its
only non-zero component is Jz. Model 1 is equation (9) written for the component Jz alone.

For a conductor supplied by sinusoidal current

Jz = Ĵ (r) sin [ωt + α(r)] ,

equation (9) can be solved for complex current density

J exp(jωt), where J = Ĵ (r) exp(jα(r)).

Substituting complex current density for J in (9) will, after minor re-writing, yield the equation

d2J

dr2
+

1

r

dJ

dr
− jκ2J = 0, κ2 = ωµ0γ, (10)

which phasor J must satisfy. In addition to r, consider also the independent variable

x = κr, x ∈ [κri, κro]. (11)

It holds

dJ

dr
= κ

dJ

dx
,

d2J

dr2
= κ2 d2J

dx2
.

We will restrict ourselves to r > 0, i.e. ri > 0. On this assumption, we can multiply
equation (10) by r2. Using (11) we express r and obtain the Kelvin differential equation [9]

x2 d2J x

dx2
+ x

dJ x

dx
− jx2J x = 0, (12)

where

J x = J x(x) = J
(x

κ

)
.

By [7], the general solution of equation (12) is

J x(x) = cB[ber(x) + j bei(x)] + cK [ker(x) + j kei(x)], (13)

with Kelvin functions ber(x), bei(x), ker(x) and kei(x) defined, for example, in [7], and the
constants cB and cK determined by initial conditions.

2.2. Model 2

When formulating model 2, the starting point is relations (1), (2) and Kirchhoff’s voltage law.
Unlike in model 1, in model 2 it is not necessary to assume that ri > 0; there can also be ri = 0.
We choose division Dn of the interval [ri, ro] with the aid of points r0 < r1 < r2 < · · · < rn,
with r0 = ri and rn = ro. We assume that for k = 1, 2, . . . , n,Dn satisfies the condition

a = π
(
r2
k − r2

k−1

)
, where a = π

(
r2

o − r2
i

)
n

.

By means of the division Dn we can divide the conductor into n partial conductors, with the
cross-section of the kth conductor being an annulus determined by the circles r = rk−1 and

3
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Figure 1. Substitute circuit of a loop formed by the kth and (k + 
)th partial conductors between
the planes z = z1 and z = z2.

r = rk . The conductor resistivity is constant and therefore the current density in the conductor
will be continuous with respect to r and thus it can at any instant of time be approximated
with arbitrary precision by a function that is constant by parts such that in the kth partial
conductor its magnitude is Jk(t), independent of r. A current aJk(t) flows through the kth
partial conductor. The kth and (k + 
)th partial conductors (
 > 0) between the planes z = z1

and z = z2 can be replaced by a lumped-elements circuit; the schematic diagram of the circuit
is given in figure 1. The number of such (mutually different) circuits is n(n − 1)/2, but there
are only n − 1 independent circuits among them. Using the independent circuits, all potential
circuits can be created. In the following, we will therefore consider only independent circuits
for 
 = 1. For the kth independent circuit, it holds by Kirchhoff’s law

Uk+1(t) − Uk(t) − UL,k(t) = 0, k = 1, 2, . . . , n − 1, (14)

where UL,k is the voltage induced in the kth circuit and Uk and Uk+1 are voltages across the
resistances that substitute the respective partial conductors. It holds

Uk+1 − Uk = �z21(Jk+1 − Jk). (15)

Let us choose the points c1 < c2 < · · · < cn such that rk−1 � ck � rk . Let us denote

ŨL,k = ∂�

∂t
, � =

∫
AC

B · dAC,

with AC being a rectangle Sk = [ck, ck+1] × [z1, z2] in the plane y = 0 and the curve C the
boundary of this rectangle. If we take into consideration the fact that the magnetic field B
excited by the current in the conductor under consideration has on the circle r = const the
direction of the tangent to this circle, then it follows from the above that

ŨL,k(t) = z21
∂

∂t

(
n∑


=1

J
(t)

∫ ck+1

ck

B
(r)dr

)
, (16)

where B
(r) is a magnetic field excited by the 
th partial conductor per unit current density,
i.e. B
(r) is expressed in Wb A−1. The quantity B
(r) is easy to calculate using (1). For
given c1, c2, . . . , cn, the magnetic fluxes considered depend on t alone. The function J
(t) on
the right-hand side of relation (16) also depends on t alone, and therefore the derivative ∂/∂t

can be replaced by the derivative d/dt .

4
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For a sufficiently large n the electromotive force ŨL,k induced around the boundary of the
rectangle Sk differs little from the voltage UL,k induced in the kth circuit so that using (15),
(16) and (3), equation (14) is in the form

Jk+1(t) − Jk(t) − γ

n∑

=1

�k


d

dt
J
(t) = 0, k = 1, 2, . . . , n − 1, (17)

where

�k
 =
∫ ck+1

ck

B
(r) dr.

Relation (17) is a system of n − 1 ordinary differential equations for unknown functions
Jk(t), k = 1, 2, . . . , n. These functions cannot be determined by means of (17) because the
number of unknowns is by one greater than the number of equations; in the following, we
therefore distinguish between model 2I and model 2J.

In model 2I, we add to equation (17) the equation

a

n∑

=1

J
 = I, (18)

where I is the chosen current flowing through the conductor. Model 2I is a system of
differential-algebraic equations [10] formed by a system of differential equations (17) extended
by algebraic equation (18).

Model 2J will be obtained by choosing one of the current densities Jk(t), k = 1, 2, . . . , n,
such that it is non-zero, for example Js(t). After substituting the chosen current density into
(17), this system will change to a system of n− 1 non-homogeneous differential equations for
unknown functions J1(t), J2(t), . . . , Js−1(t), Js+1(t) . . . , Jn(t).

For a conductor supplied by sinusoidal current, the current density or the complex current
density in the kth partial conductor will be

Jk(t) = Ĵ k sin(ωt + αk) (19)

or

Jk exp(j ωt), where Jk = Ĵ k exp(j αk).

For the complex current density, (17) can be rewritten as a system of equations

Jk+1 − Jk − j ωγ

n∑

=1

�k
J
 = 0, k = 1, 2, . . . , n − 1. (20)

In model 2I (20) will be extended by equation (18) written for the respective phasors. This
will yield a system of n linear non-homogeneous equations for phasors J1, J2, . . . , Jn. We
obtain model 2J by choosing one of these phasors and substituting it in (20). A normalized
model 2J is obtained by normalizing equations (20), i.e. dividing them by one of the phasors,
e.g. Js . Normalized phasors

Jk rel
= Jk

Js

, k = 1, 2, . . . , s − 1, s + 1, . . . , n,

are the solution of normalized system (20), and Js rel
= 1.
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3. Comparison of the two models

Zero current density satisfies system (17) and it obviously also satisfies equation (12). Zero
solution corresponds to a state when the conductor is not connected to the source. In
model 2, i.e. model 2I or model 2J, the current density J (r, t) in a conductor is determined by
the functions Jk(t), k = 1, 2, . . . , n. If some current density J (r, t) is the solution of model
1 or model 2, then any multiple of this current density is also the solution of the respective
model. Every solution of model 2I or model 2J can be normalized using Js . It is easy to prove
that for given κ, n and s, such normalized solutions of models 2I and 2J are identical to the
solution of model 2J normalized with respect to Js .

Every r ∈ [ri, ro] lies in some partial interval [rk−1, rk]. Using the notation introduced in
this paper, we can thus write J (r, t) = Jk(t) and

B(r, t) =
n∑


=1

J
(t)B
(r).

For ck = r and ck+1 = r + �r , equation (17) can be written in the form

J (r + �r, t) − J (r, t) − γ
∂

∂t

∫ r+�r

r

B(r, t) dr = 0. (21)

The magnetic field in the conductor is continuous and therefore the mean value theorem
[7, 11] can be applied, according to which∫ r+�r

r

B(r, t) dr = �rB(r + θ�r, t), θ ∈ (0, 1),

and equation (21) can be written in the form

J (r + �r, t) − J (r, t)

�r
− γ

∂

∂t
B(r + θ�r, t) = 0.

For �r → 0, this equation converges to the equation

∂J

∂r
− γ

∂

∂t
B(r, t). (22)

In this equation we express B(r, t) in terms of (1) and (5), differentiate the equation with respect
to r, and after some rewriting we obtain equation (9). This result increases the probability
that the two models considered are correct, but it poses a question: is it necessary to deal
with model 2 described by equations (17) and (18) when there exists model 1 described by
the elegant equation (9)? Moreover, the solution of equation (9) is also expressed explicitly
by formula (13) if the conductor is supplied by sinusoidal current.

According to [7, 12, 13], equation (12) has in the interval [κri, κro] a unique solution
J x(x), which satisfies the initial conditions

J x(X) = Y0,
d

dx
J x(X) = Y1,

where X, Y0 and Y1 are the given numbers, X ∈ [κri, κro]. The unique solution is given by
relation (13), in which the constants cB and cK are determined using the initial conditions.
According to subsection 2.1, the phasor of current density J (r) is the solution of equation (10)
on the interval [ri, ro], where ri > 0, and it holds

J (r) = cB[ber(κr) + j bei(κr)] + cK [ker(κr) + j kei(κr)], (23)

with the constants cB and cK being the solution of a system of linear equations:

cB[ber(κr̄) + j bei(κr̄)] + cK [ker(κr̄) + j kei(κr̄)] = p, (24)

6
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cB[ber′(κr̄) + j bei′(κr̄)] + cK [ker′(κr̄) + j kei′(κr̄)] = d

κ
, (25)

where the apostrophe denotes derivatives with respect to x, and

J (r̄) = p,
d

dr
J (r̄) = d, (26)

with r̄ , p and d being the given numbers r̄ ∈ [ri, ro].
Choosing the numbers r̄ and p is no problem; the problem is to choose a priori the number

d. The first condition in (26) is matched in model 2J by the choice of current density Js(t),
while the second condition in (26) is a price for differentiating. Model 2 starts from integral
relations (1) and (2), whereas model 1 starts from differential relations (6) and (7). In the
above proof of the equivalence of the two models, equation (9), which represents model 1, is
obtained from equation (22) of model 2 by differentiating with respect to r. A consequence of
every differentiation is the loss of information, and this information has to be complemented.
In model 1, this complementation is the second condition in (26).

4. Examples

In all the examples given below it is assumed that the total current through the conductor
(see (18)) is I = sin ωt , i.e.

I = Î , Î = 1A.

In agreement with (19), the phasor of current density in conductor J (r) is given by the numbers
Ĵ k and αk, k = 1, 2, . . . , n, which are obtained by solving equations (20) and (18). In the
following figures, the normalized amplitude of the current density Jrel = Jrel(r) is shown as a
curve joining the points (ck, Ĵ k/Jmax), where

Jmax = max
k=1,2,...,n

Ĵ k.

The initial phase angle αk of the current density in the kth partial conductor in the figures
is shown as a curve α(r) joining the points (ck, αk). The points ck, k = 1, 2, . . . , n, (see
subsection 2.2) were chosen as follows:

ck = rk + (rk − rk−1)

[

 +

k − 1

n − 1
(1 − 
)

]
, 
 ∈ [0, 1]. (27)

With this choice, it holds cn = ro and Jmax = Ĵ n. The calculated current density is practically
independent of 
 and n if n � 200. The resistivity values at a temperature of 293 K, which is
used in examples, were taken over from [14]

Metal � (10−8 �m)

Silver (Ag) 1.587
Copper (Cu) 1.678
Aluminium (Al) 2.650
Platinum (Pt) 10.5

7
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1.00

0.99

0.98

0.97

0.96

0.95
10864

r (mm)

Jrel (−)

Platinum

Silver

Figure 2. Normalized amplitude of current density in a conductor cross-section in example 1.

-10

-5

0

5

10

15

10864 r (mm)

α (deg)

Platinum

Silver

Figure 3. Initial phase of current density in a conductor cross-section in example 1.

4.1. Example 1

A silver or platinum tubular conductor is 8 mm in inner diameter (ri = 4 mm) and 20 mm in
outer diameter (ro = 10 mm); the angular frequency of the current source ω = 2πf , where
f = 60 Hz.

The calculated dependence of the normalized amplitude Jrel and of the initial phase α

of the current density on the distance r from the conductor axis is shown in figure 2 and in
figure 3, respectively. The normalized amplitude of current density in figure 2 is the solution
of model 2I. The same values as in figure 2 would be obtained by normalizing the solution of
model 2J or by solving model 2J for

Js = Jn = exp(j αn),

where αn = α(ro) in figure 3. When choosing Js = Jn with the initial phase α′
n �= αn, the

curve α(r) will be shifted in parallel such that α(ro) = α′
n. The dependence of the curve α(r)

on the choice of the angle of phasor Js does not indicate any ambiguity of the solution of
model 2J; it is merely the choice of the instant t = 0. It holds

sin(ωt + αn) = sin(ωt ′ + α′
n)

8
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1
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+
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+
+

Figure 4. Normalized amplitude of current density in the cross-section of a conductor in example
2 obtained via solving model 2 (solid line) and model 1 (isolated points) for differently chosen
initial conditions.

180

90

0

-90

-180

10864
r (mm)

α (deg)

r̄ = 4 mm ◦
r̄ = 7 mm •
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+
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+
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+
+

+
+

+
+

+
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+
+

+
+

+
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Figure 5. Initial phase of current density in the cross-section of conductor in example 2 obtained via
solving model 2 (solid line) and model 1 (isolated points) for differently chosen initial conditions.

for

t ′ = t +
αn − α′

n + 2ϑπ

ω
,

where ϑ is an integer. Likewise, the solution of model 2I is affected by the choice of the angle
of phasor I .

4.2. Example 2

A copper conductor of the same dimensions as in example 1 is supplied from a source of
frequency f = 10 kHz.

The current density in the conductor, shown in figures 4 and 5, was obtained via solving
model 2I for n = 500,
 = 0. Using this solution, complex numbers p and d can be determined

9
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for any arbitrary chosen r̄ ∈ [ri, ro] that satisfy relation (26), and by solving equations (24)
and (25) cB and cK can be obtained. This in fact determines the solution of (23) of model 1.
Several isolated points of the solution of model 1 are illustrated in figures 4 and 5 for three
different values of r̄ . The curve α(r) in figure 5 has one discontinuity point. This discontinuity
is only apparent since the phasor angle is adjusted such that it holds α ∈ (−180, 180] deg.
The number of points of apparent discontinuity increases with increasing f . Equation (12)
is linear with respect to the derivatives and its solution is defined for at least r ∈ [ri, ro].
According to [7] r̄ can be chosen anywhere in the interval [ri, ro], but figures 4 and 5 do not
testify to this. In section 3, it was proved exactly that the two models were equivalent. The
discrepancy between the solutions of model 2 and model 1 for r̄ = 7 mm and 10 mm can only
be explained by the sensitivity of model 1 to initial conditions and by the fact that the value d
was obtained by numerical differentiation of discrete data obtained by the solution of model 2.
The differentiation of numerical data does not exactly belong to precise numerical operations
[15]. On this occasion, attention should also be drawn to potential problems in the calculation
of the current density phasor using formula (13) since the calculation of the values of Kelvin
functions is for higher values of x numerically unstable. For example, the calculation of the
functions ker and kei by simply adding up the series in terms of which these functions are
defined is in d.p. (double precision) unstable already for x > 12. For a copper conductor and
r = 10 mm we have, by (11), x > 12 already for f > 3.2 kHz. In the present work therefore,
asymptotic formulae are used that are given in [16]. The problems of calculating the Kelvin
functions have also attracted attention quite recently, as witnessed by Mingli et al [3, 17].

4.3. Example 3

An aluminium tubular conductor is 16 mm in inner diameter and 20 mm in outer diameter;
the current source frequency is f = 1 MHz to 1 GHz.

In the present paper it is assumed that the vectors J and B do not depend on the
z coordinate, i.e. the current is considered to be slowly varying (according to [5]). This
restriction can be met by requiring that the maximum linear dimension of the system, 
max, be
much smaller than the free space wavelength associated with the driving frequency. That is

f � c


max
,

where c is the speed of light in vacuum. By this criterion and for 
max = 0.1 m, the frequency
1 GHz is at the upper limit of the applicability of models 1 and 2.

The calculated dependence of the normalized amplitude Jrel and the initial phase α of
current density on distance r from the conductor axis is shown in figures 6 and 7, respectively.
The magnitude of Jrel in the right neighbourhood of point ri decreases with increasing f .
With increasing f , the condition number [18] of matrix MI or MJ of the system of linear
equations of model 2I or model 2J also increases. Roughly speaking, the condition number
of matrices MI and MJ increases with increasing f and ro, and with decreasing ri. With an
increasing condition number, matrices MI and MJ become ill-conditioned [15], and in the
numerical calculation the result of the calculation may be distorted due to rounding errors or,
in the extreme case, matrices MI and MJ cannot be inverted. The calculation precision is
given by the number of bits reserved in the computer for representing a real number. Usually
it is 64 bits, and this precision is called d.p. In a calculation with the given precision there
may be problems if some values Ĵk/Jmax are comparable with the machine epsilon, which is
the minimum number that is not negligible with respect to the number 1. In d.p., the machine
epsilon is equal to 2−52. There will certainly be problems in the calculation if some values
Ĵk/Jmax are comparable with the least number that is represented in the computer as non-zero;

10
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Figure 6. Normalized amplitude of current density in the cross-section of a conductor in
example 3.

180

90

0

-90

-180

109.598.58
r (mm)

α (deg)

Figure 7. Initial phase of current density in the cross-section of a conductor in example 3 for
f = 1 MHz.

in d.p. it is 2−1022. In figure 6, the curves for f > 1 MHz show the solution obtained by
calculation with greater precision than d.p. In figure 6, the result of numerical calculation is
plotted irrespective of the possibility of realizing the large range of current density.

5. Current density in a cylindrical conductor

The cylindrical conductor is a tubular conductor with zero inner diameter, i.e. ri = 0.
Model 1 is expressed by equation (12) and its solution (13) for initial conditions (26).
Equation (12) was derived for ri > 0 and thus its application to calculate current density
in the cylindrical conductor is not quite correct without some detailed reasoning. The point
x = 0, where x = κr , is the singular point of equation (12). This singularity can, however, be

11
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removed because the limit of all three members on the left side of equation (12) is finite for
x → 0+.

We will show that the solution of model 1 for the cylindrical conductor is given by the
relation

J (r) = cB[ber(κr) + j bei(κr)], cB = p

ber(κr̄) + j bei(κr̄)
, (28)

where p is the chosen current density factor at a distance r̄ from the conductor axis; r̄ � 0.
Solution (28) corresponds to the solution of model 2J for a given Js(t), with r̄ lying in the sth
partial conductor.

Proof. In the proof of the statement, we will consider the initial conditions

J (r̄) = p,
d

dr
J (ṙ) = d, r̄, ṙ ∈ [0, ro],

which are more general than conditions (26). We choose a sequence of tubular conductors
such that ri gradually decreases, and ri → 0+. For each tubular conductor we always choose
ṙ = ri, while we consider r̄ to be chosen fixed if r̄ � ri. In case r̄ < ri, we will choose r̄ = ri.
Proceeding like this is not in contradiction with r̄ being given a priori since in the examination
of the given sequence of tubular conductors, what is of importance is the state when the limit
is reached. There are two possibilities: either r̄ > 0 or r̄ = 0. For r̄ > 0, a finite number
of steps must lead to r̄ � ri. If r̄ = 0, this equality occurs exactly in the limit. According to
section 3, the constants cB and cK are the solutions of the equations

cB[ber(κr̄) + j bei(κr̄)] + cK [ker(κr̄) + j kei(κr̄)] = p, (29)

cB[ber′(κṙ) + j bei′(κṙ)] + cK [ker′(κṙ) + j kei′(κṙ)] = d

κ
, (30)

where the apostrophe denotes derivatives with respect to x = κr . For ri → 0+ the functions
ber′(κṙ), bei′(κṙ) and kei′(κṙ) converge to zero since ṙ = ri. Thus by (30)

cK → d

κ ker′(κṙ))
,

and this means that cK → 0 because

lim
ṙ→0+

ker′(κṙ) = −∞.

This also proves that cK = 0 for the cylindrical conductor and the validity of (28) follows from
(23) and (29). Let us only add that for r̄ = 0, the relation cB = p holds because ber(0) = 1
and bei(0) = 0.

An idea of the effect of the magnitude of n on the solution of model 2 can be formed by
comparing the solutions of models 1 and 2 for the cylindrical conductor. Figure 8 gives a part
of the solution of models 1 and 2J for an aluminium conductor of 20 mm in diameter, f =
105 Hz. Both models were solved on the assumption that J (ro) = 1 A m−2; their solution
differs the most in the neighbourhood of the longitudinal conductor axis. This magnitude of
deviation depends on n and 
. Shown in figure 8 is the Ĵ (r) amplitude of the solution of
model 1 in the neighbourhood of point r = 0 by a continuous curve, and the solution of model
2J is illustrated by amplitudes Ĵ k for several values of n. When calculating the solution of
model 2J, 
 = 0.5 was chosen in formula (27). Let us add that the convergence of the solution
of model 2 to the solution of model 1 worsens with increasing frequency f .

Figure 9 illustrates the normalized phasor J rel = J/Jmax in Gaussian plane for several
frequencies in a cylindrical aluminium conductor of 20 mm in diameter. For f = 0 the
current density in the conductor cross-section is constant, J rel(r) = 1, and its normalized

12
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Figure 8. Amplitude of the solution of models 1 (solid line) and 2J (isolated points) in the
neighbourhood of a longitudinal conductor axis.

Figure 9. Normalized phasor of the solution of model 2J in Gaussian plane in dependence on the
frequency of the source.

phasor is shown as a point marked with a circle. If f > 0, then each curve in figure 9 begins
at the point J rel(ro), at which it holds |J rel(ro)| = 1, and it ends at the point J rel(0). The
argument of current density phasor in the cylindrical conductor has a similar course as in
the tubular conductor (see figures 3, 5 and 7). The curve for f = 106 Hz forms a spiral in
the neighbourhood of the beginning of the Gaussian plane, which runs several times round the
beginning. This spiral cannot be seen in figure 9 because for r < 9.239 mm the module of
phasor J rel is in the interval (10−52, 10−4) and therefore the spiral blends in with the beginning
of the Gaussian plane.
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6. Conclusion

In the paper, two models are described whose solution is the current density in an isolated
tubular conductor supplied by an ideal current source with a frequency not exceeding 1 GHz.
It is proved in section 3 that the two models are equivalent. For the source of sinusoidal
current, model 1 is represented by equation (12), by its general solution (13) and by initial
conditions (26). Models 2I and 2J are in principle formed by a system of linear equations (19)
and by the condition placed on the total conductor current or on the current density. Model 1
cannot be used in the case that ri > 0 because d in (26) cannot be determined a priori. It was
shown in section 5 that for the cylindrical conductor in the general solution, (13), the constant
cK is equal to zero and thus model 1 is in this case useable.

The proposed general methods are used on several actual examples of tubular and
cylindrical conductors. The solutions of examples are given in the figures. When solving
the examples, much attention is devoted to the problem associated with the realization of
numerical calculation on a computer.
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